The "last mile" of data handling:
Fermilab’s IFDH tools

Adam L Lyon and Marc W Mengel
Fermilab, P.O. Box 500, MS 369, Batavia IL 60510

E-mail: lyon@fnal.gov

E-mail: mengel@fnal.gov

Abstract. IFDH (Intensity Frontier Data Handling), is a suite of tools for data movement
tasks for Fermilab experiments and is an important part of the FIFE (Fabric for Frontier
Experiments) initiative described at this conference. IFDH encompasses moving input data
from caches or storage elements to compute nodes (the "last mile" of data movement) and
moving output data potentially to those caches as part of the journey back to the user. IFDH
also involves throttling and locking to ensure that large numbers of jobs do not cause data
movement bottlenecks. IFDH is realized as an easy to use layer that users call in their job
scripts (e.g. "ifdh cp"), hiding the low level data movement tools. One advantage of this layer
is that the underlying low level tools can be selected or changed without the need for the user
to alter their scripts. Logging and performance monitoring can also be added easily. This
system will be presented in detail as well as its impact on the ease of data handling at Fermilab
experiments.

1. Experiment Software Time-line

The way experiment software is used changes as the experiment progresses: from design, to
detailed modeling, to data analysis. A detailed timline of this follows, and then a discussion
of how our “ifdh” system attempts to ease the transitions in this process. Intensity Frontier
experiments at Fermilab seem to be following a fairly common pattern in their use of software
and storage:

e They start off with high rates of software change and small sets of data files of simulated
data, and they run that software over that data (and regenerate that data) onto our central
BlueArc NFS Filer, and all their scripts and tools run directly off of the NFS storage.

e As the software stabilizes, they begin to generate larger sets of simulated data, and then as
the detectors and other equipment come on line, they start recording actual data. Now they
begin using local batch resources for generation and analysis, and have to learn to stage data
in and out of the central NF'S storage with throttling tools, so they don’t overload the NFS
service. They also begin building deep hierarchies of directories in the file store to organize
and keep track of their data, and building “playlists” of data files to analyze.

e As their data grows, they come to the realization that they cannot keep requesting more
space on the central NFS filer anymore, and they really need to migrate to using hierarchical
storage, and to using a meta-data catalog to keep track of their files.

The design of our “ifdh” layer attempts to ease the transitions between these differing modes of
software operations. When experiments make the first transition from running interactively off
of the NFS filer to running batch jobs, they have a simple transition to make from reading and
writing directly to files on the NFS filer, to staging it locally. We can see how this looks in a
sample job shell script sample as it evolves over time.

The experimenters initially convert from:

while read sourcefile
do

framework_exe -c config $sourcefile $destfile
done < playlist

to

while read sourcefile

do
ifdh cp $sourcefile localsource
framework_exe -c config localsource localdest
ifdh cp localdest $destfile

done < playlist

That is, they simply use “ifdh” to get the files to and from NF'S, as if with plain Unix “cp”, and
it throttles the copies so the file server isn’t overloaded, and they go along as usual.

Their next big transition is when they start using the SAM file catalog instead of playlist files.
As far as the scripts they run, this is again a simple transition using “ifdh” — instead of reading a
playlist, they get files from a SAM “project”, which deals out files from a dataset to one or more
running jobs:

while uri=‘ifdh getNextFile $projectUrl® && [-n “‘$uri”]

do
localsource=‘ifdh fetchInput $uri
framework_exe -c config $localsource localdest
ifdh cp localdest $destfile

done

and now we have a job script fragment that can use multiple jobs to process a data-set defined
in the SAM data catalog. In some cases it is even simpler, because the getNextFile loop
can be loaded into the Art Framework used by many of our Intensity Frontier experiments.
(Note that this is actually a slightly simplified example; a full job script example is at
https://cdevs.fnal.gov/redmine /projects/ifdhc/repository /revisions/master/entry /demo.sh)

As these jobs move out onto the Open Science Grid, they now do not need to change these
scripts at all — the ifdh fetchInput and ifdh cp utilities know how to use Grid software utilities
to transfer files to and from Fermilab, without changing the user’s scripts. The “ifdh” utility
can pick the best mechanism for transferring data back to Fermilab by looking around at the
environment, or users can explicitly choose by passing environment variables into their jobs.

2. ART Framework Integration

For our experimenters using the ART Framework; there is also an ifdh _art set of libraries, which
lets users specify a few command-line arguments to transparently switch from play-list-file style
operation to working from SAM datasets with ifdh file transfers.

enstore

stage disk
~ wat ches}
N

............... e
~

Figure 1. Data flow of analysis jobs using SAM
SAM requests in green,input data in blue,output data in red

3. Implementation Hiding

The simple invocation of “ifdh cp” can hide anything from a simple Unix cp to staging a file
to a Grid storage element, and then third-party copying the file back to Fermilab. When we
encourage our experiments to use this layer, we give ourselves the flexibility to change how data
is transferred, without the user having to change their software or scripts. Figure 1 shows the
overall system, where users jobs are run in a Condor DAG (black arrows), with a leader job
starting a SAM “project”, SAM staging data in from hierarchical storage as needed, each job
making getNextFile calls and using ifdh to copy the input files locally, and the ifdh cp to send
the data back to Fermilab is done by staging the files to an SRM near the job, and one job
slot taking on the role of copying back files via third-party-copy to Fermilab. The ifdh utility is
providing all of the colored lines in this diagram.

4. Swiss Army Knife design
The “ifdh” utility is designed to be the software equivalent of a Swiss Army Knife — a whole set of
useful tools in a single executable; it has a lightweight client for a subset of the SAM Web API,
it has the ifdh cp and ifdh mv commands for moving data, which can use gsiftp: or srm: protocol
tools, or the site local CPN locking scripts for transferring data using NFS without overloading
the servers. This means that all of the functions that “ifdh” handles for you are available quickly,
without requiring large job tarballs or large copies via CVMFS.

5. Language Support
The ifdh utilities are available as a command line utility, a C++ shared library, and a python
library, with matching calls, so that experiments can integrate it as they find appropriate.

In C++:

#include "ifdh.h"
ifdh iQ);
location = i.locateFile(base_uri, filename);

in Python:

import ifdh
i = ifdh.ifdh()
location = i.locateFile(base_uri, filename);

In bash:
location=‘ifdh locateFile $base_uri $filename®

Tools included in the ifdh executable are:

e SAM dataset tools let programs define data-sets and examine what files are included in
them.

e SAM project tools (start, find, getNextFile, updateFileStatus, end) let programs cooperate
to process an entire dataset, and keep track of progress and completion.

e SAM locate file tools let scripts find what copies of known files are registered with SAM.

e File transfer tools (ifdh cp, mv, getInput, copyBackOutput) chooses transfer method
automatically, but can be overriden supports:

— dd w/throttling for NFS

— Srm copy wrapper

— gridftp wrapper

— srm with intermediate staging

6. Lightweight
The ifdh executable that provides the above tool weighs in under 1 megabyte and relies on only
a handful of standard system libraries.

7. Logging

The ifdh utility also uses RFC5426-style messaging to log activity over UDP packets back to an
rsyslog service on our monitoring server, where we can keep track of file copies, data rates, etc.,
as well as having the ability to forward log messages (i.e. for a particular experiment) to other
rsyslog servers. Users can also use “ifdh log” to log their own messages in their scripts.

8. Conclusions
A thin layer of software to abstract the “last mile” of data handling for experiment jobs is
extremely useful for assisting experiments in migrating from early software development to high
volume production operation, and for giving flexibility to standardize, monitor, and change how
the last leg of data handling is performed, without making experimenters change their software
and scripts. The “ifdh” executable/library approach is working well in practice, and has already
allowed us to make experimenters’ scripts able to operate in different batch environments using
differing file transfer mechanisms without changing their scripts.
FERMILAB-CONF-13-481-CD.

